REGULAR ARTICLE

Calculations and assignments of endohedral helium-3 chemical shifts of open-cage fullerenes and higher fullerenes

Guan-Wu Wang · Ping Wu

Received: 22 November 2008/Accepted: 17 January 2009/Published online: 6 February 2009 © Springer-Verlag 2009

Abstract The endohedral ³He NMR chemical shifts of open-cage fullerene compounds and higher fullerenes ³He@C_n (n = 82, 84, 86) have been calculated at the GIAO-B3LYP/3-21G//AM1 level. The predicted ³He NMR chemical shifts of open-cage fullerene compounds agree well with the experimental data. More importantly, the challenging peak assignments in the two ³He NMR spectra of higher fullerenes have been successfully achieved by our computed endohedral ³He chemical shifts in combination with experimental results.

Keywords Endohedral fullerenes \cdot ³He NMR \cdot Density functional theory \cdot Semiempirical

1 Introduction

Helium-3 NMR spectroscopy is a powerful tool for the structural assignments of fullerenes and their derivatives [1]. Each ³He-encapsulated fullerene compound has a distinct ³He NMR peak, while a nonfullerene chemical has no ³He NMR peak. For higher fullerenes, an individual pure isomer was difficult to obtain due to its small amount in the arc-processed soot and the existence of other

G.-W. Wang

State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 730000 Lanzhou, Gansu, People's Republic of China co-eluted isomer(s) during separation. Therefore, only the mixture of higher fullerenes was labeled with helium-3, and then subject to the ³He NMR measurement. The ³He NMR spectrum of a purified ³He@C₈₄ fraction containing ³He@C₇₆, ³He@C₇₈ and ³He@C₈₂ was reported in 1995 [2]. A few years later, the ³He NMR spectrum of a mixture labeled with roughly 60% of C₈₄ isomers, 40% of C₇₆ and C₇₈ isomers, and small amount of other fullerenes such as C₈₂ and C₈₆ was recorded [3]. However, no assignment for the isomers of ³He@C₈₂, ³He@C₈₄ and ³He@C₈₆ except for the D_2 isomer of ³He@C₈₄ was made [2, 3].

At the same time, the calculation of ³He NMR chemical shifts has become of increasing interest and importance in order to understand and assign the experimentally obtained ³He NMR data. The ³He NMR chemical shifts for ³He@C_n and their derivatives were theoretically studied at Hartree-Fock (HF), density functional theory (DFT) and semiempirical (MNDO) levels with gauge including atomic orbitals (GIAO) [4–14]. However, the deviations between the calculated and experimental ³He NMR chemical shifts could be very large, e.g., for C_{60} and C_{70} , depending on the calculation levels and optimized molecular structures [5, 7, 9, 14]. Endohedral ³He NMR chemical shifts in higher fullerenes with 82-86 carbons were calculated at the levels of GIAO-SCF/tzp(He)/dz(C)//MNDO [7], GIAO-SCF/DZ//MNDO [9], GIAO-SCF/DZP//BP86/3-21G [9], GIAO-SCF/3-21G// B3LYP/6-31G* [13], GIAO-MNDO//B3LYP/6-31G* [14] and GIAO-MNDO//MNDO [14]. Unfortunately, these calculation data were not sufficient for quantitative prediction [13], and an unequivocal assignment of these close-lying peaks for C_{84} isomers on the basis of the computations was not possible [9, 13]. Consequently, few of the ³He NMR peaks for higher fullerenes above ${}^{3}\text{He}@\text{C}_{82}$ have been assigned [9, 13], and the assignment for most of the ³He NMR peaks still remains as a challenging task.

G.-W. Wang (🖂) · P. Wu

Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, 230026 Hefei, Anhui, People's Republic of China e-mail: gwang@ustc.edu.cn

Recently, we [15] calculated the ³He NMR chemical shifts of ${}^{3}\text{He}@C_{n}$ and their derivatives at the GIAO-B3LYP/3-21G and GIAO-HF/3-21G levels with AM1 and PM3 optimized structures. A good linear relationship between the computed and experimental ³He NMR chemical shifts had been found. The calculated corrected ³He NMR chemical shifts $(\delta_{\rm corr})$ matched the experimental data very well over a wide range of ³He-encapsulated fullerene compounds. The GIAO-B3LYP/3-21G//AM1 method was one of most economical protocols and was applied to the assignments/reassignments of C₇₆, C₇₈ isomers and bis-adducts of C₆₀. However, all of the examined ³He-encapsulated fullerene compounds were closed-cage, and higher fullerenes beyond C78 have not been investigated. In continuation of our interest in ³He NMR [15], in this paper we apply our developed GIAO-B3LYP/3-21G//AM1 method to opencage fullerenes, and more importantly, we attempt to tackle the challenging assignments for the experimentally observed ³He NMR peaks of ³He@C₈₂, ³He@C₈₄ and ³He@C₈₆ isomers by our calculation method in combination with the previous experimental results.

2 Computational methods

All geometries were optimized at the AM1 semiempirical level [16], and the endohedral ³He NMR chemical shifts were calculated at the GIAO (gauge including atomic orbitals [17])-B3LYP (Becke's [18] three-parameter hybrid-exchange functional and the correlation functional of Lee et al. [19]) level with the 3-21G basis set. The calculated endohedral ³He NMR chemical shifts (δ_{calc}) for the ³He located at the center of the fullerene cage at the GIAO-B3LYP/3-21G//AM1 level were given in ppm relative to the free ³He (59.66 ppm). It should be noted that the magnetic field within a sphere of less than 1 Å diameter at the center of C₆₀ was found to be very homogeneous [5], the δ_{calc} values were little affected for the displacement of ³He out of the center. The corrected ³He chemical shifts (δ_{corr}) were obtained from the correlation Eq. 1 [15]:

$$\delta_{\rm corr} = -1.167 + 1.330\delta_{\rm calc} \tag{1}$$

The correlation Eq. 1 was derived from the linear regression fitting of the calculated and experimental data for 27 ³He-encapsulated fullerene compounds [15]. For the purpose of comparison, the δ_{calc} data for the three open-cage fullerene compounds (1–3) by the GIAO-B3LYP/3-21G//B3LYP/6-31G* method and then their δ_{corr} values by Eq. 1 were also computed. All optimized structures were verified as being minima except for the C_s ³He@C₈₄:10 isomer by frequency calculations. All calculations were carried out with the help of GAUSSIAN 03 program package [20].

3 Results and discussion

3.1 Application to open-cage fullerene compounds

Previously, we had only included closed-cage fullerene compounds in the calculations of endohedral ³He NMR chemical shifts. We wondered if our calculation method could be extended to open-cage fullerene compounds. The ³He NMR chemical shifts of two ³He-encapsulated open-cage fullerene compounds, i.e., compounds ³He@1 (Rubin's open-cage fullerene) [21] and ³He@2 (Komatsu's open-cage fullerene) [22] (Fig. 1), have been reported in the literature.

The δ_{calc} , δ_{corr} and experimental ³He NMR chemical shifts (δ_{exp}) of compounds ³He@1 and ³He@2 at the GIAO-B3LYP/3-21G//AM1 and GIAO-B3LYP/3-21G//B3LYP/6-31G* levels are listed in Table 1. As seen from Table 1, the δ_{corr} values of compounds ³He@1 and ³He@2 at both GIAO-B3LYP/3-21G//AM1 and GIAO-B3LYP/3-21G//B3LYP/6-31G* levels agree well with their experimental data. Helium-4 rather than helium-3 was encapsulated in compound **3** (a modification of Komatsu's open-cage fullerene) [23], hence the endohedral ³He NMR chemical shift was not available. It was reported that the ¹H NMR chemical shift of the encapsulated H₂ in compound H₂@**3** (-7.79 ppm [23]) was upfield shifted relative to that in compound H₂@**2** (-7.25 ppm [24]). Interestingly, the same trend is observed for the calculated δ_{corr} of compound

Fig. 1 Structures of ³Heencapsulated open-cage fullerene compounds ³He@**1–3**

Table 1 The δ_{calc} , δ_{corr} and δ_{exp} of compounds ³He@1-3

Compound	$\delta_{ m calc} \ (m ppm)^{ m a}$	$\delta_{ m corr} \ (m ppm)^{ m a}$	$\delta_{ m calc} \ (m ppm)^{ m b}$	$\delta_{ m corr} \ (m ppm)^{ m b}$	δ_{exp} (ppm)
³ He@1	-6.07	-9.24	-5.81	-8.89	-10.10 ^c
³ He@ 2	-8.35	-12.27	-8.31	-12.22	-11.86°
³ He@ 3	-8.54	-12.53	-8.82	-12.90	-

^a Calculated at the GIAO-B3LYP/3-21G//AM1 level

^b Calculated at the GIAO-B3LYP/3-21G//B3LYP/6-31G* level

^c Experimental value from Ref. [21]

^d Experimental value from Ref. [22]

³He@**3** compared to that of compound ³He@**2**, indicating that our computation method can be applied to open-cage fullerene compounds. Because the structural optimization at the AM1 level is much faster than that at the B3LYP/6-31G* level, and the optimized structures by both methods have insignificant influence on the δ_{corr} values, the GIAO-B3LYP/3-21G//AM1 method will be employed for the rest calculations of endohedral ³He NMR chemical shifts.

3.2 Structural assignment of ³He@C₈₂

Nine isomers $(2 \times C_{3v}, C_{2v}, 3 \times C_2, 3 \times C_s)$ obey the isolated pentagon rule (IPR) for C_{82} . The ¹³C NMR spectrum of a C_{82} isomeric mixture showed that the isomer with C_2 symmetry was the most abundant isomer while the isomers with C_{2v} and C_{3v} symmetries were minor, and at least three more isomers with C_2 and/or C_s symmetry might exist in very little amount [25]. Purified C_{82} containing only the isomer with C_2 symmetry was later achieved by Dunsch et al. [26, 27]. The major isomer with C_2 symmetry proved to be the isomer $C_2 C_{82}$:3 [28] (Fig. 1) by the ¹³C NMR calculation of all nine IPR isomers of the C_{82} isomers [29].

The δ_{calc} and δ_{corr} data of all nine isomers of ³He@C₈₂ at the GIAO-B3LYP/3-21G//AM1 level along with the δ_{exp} value of ³He@C₈₂ are collected in Table 2.

Table 2 The δ_{calc} , δ_{corr} and δ_{exp} data of ³He@C₈₂ isomers

Species	$\delta_{ m calc}$ (ppm)	$\delta_{ m corr}$ (ppm)	$\delta_{ m exp}$ (ppm)
C_2^{3} He@C ₈₂ :1	-0.24	-1.49	
$C_{\rm s}$ ³ He@C ₈₂ :2	-7.22	-10.78	
C_2 ³ He C ₈₂ :3	-6.26	-9.50	-10.50^{a}
$C_{\rm s}^{-3}$ He C ₈₂ :4	-6.45	-9.74	
C_2 ³ He@C ₈₂ :5	-2.39	-4.35	
$C_{\rm s}^{3}$ He@C ₈₂ :6	2.56	2.23	
C_{3v} ³ He@C ₈₂ :7	13.20	16.40	
C_{3v} ³ He@C ₈₂ :8	18.52	23.46	
C_{2v} ³ He@C ₈₂ :9	7.41	8.69	

^a δ_{exp} from Refs. [2, 3] after rounding off to two decimal

In the ³He NMR spectrum reported in 1995, it was suggested that only the peaks at -10.50 and -11.12 ppm could be considered as C₈₂ [2]. On the other hand, while the peak at -10.495 ppm was unassigned, the peak at -11.114 ppm was assigned as one of the ³He@C₈₄ isomers in the ³He NMR spectrum presented in 2000 [3]. Therefore, the peak at -10.50 ppm should be ascribed to ³He@C₈₂.

The assignment of the observed peak at -10.50 ppm cannot be made simply by comparison with the calculated corrected ³He chemical shifts because some of the δ_{corr} values are very close and the calculation errors cannot be ignored [9, 13]. However, previous work demonstrated that the major C₈₂ isomer was identified as a structure with C₂ symmetry [25–27]. The corrected ³He chemical shifts of the three isomers with C₂ symmetry are -1.49, -9.50 and -4.35 ppm for C₂ ³He@C₈₂:1, C₂ ³He@C₈₂:3 and C₂ ³He@C₈₂:5, respectively. The suggested minor isomers with C_{2v} and C_{3v} symmetries [25] have δ_{corr} values at 8.69, 16.40 and 23.46 ppm for C_{2v} ³He@C₈₂:9, C_{3v} ³He@C₈₂:7 and C_{3v} ³He@C₈₂:8, respectively. Obviously, the peak at -10.50 ppm should be assigned as the C₂ ³He@C₈₂:3 isomer.

3.3 Structural assignments of ³He@C₈₄ isomers

[84]Fullerene (C_{84}) is the third most abundant fullerene and has the richest experimentally observed isomers. Of the 24 IPR isomers $(4 \times D_2, 5 \times C_2, 5 \times C_s, 2 \times D_{2d}, 4 \times C_{2v})$ C_1 , D_{3d} , T_d , $D_{6 h}$), at least ten isomers with $D_2(IV)$ [30], *D*_{2d}(II) [30], *D*_{6h} [31], *D*_{3d} [31], *D*_{2d}(I) [32], *D*₂(II) [32], *C*₂ [32], $C_s(a)$ [32], $C_s(b)$ [32], C_2 [33] symmetries were isolated and characterized. The two major isomers were C_{84} :22 [28] and C_{84} :23 [28] with D_2 and D_{2d} symmetry, respectively [30]. Among the minor isomers, D_{2d} C₈₄:4 could be unambiguously assigned based on its ¹³C NMR spectral data [32]. The previously temporarily assigned isomers $D_2(II)$, C_2 , $C_s(a)$ and $C_s(b)$ were identified as isomers C₈₄:5 C₈₄:11, C₈₄:16 and C₈₄:14, respectively [28], by comparison of the experimental and calculated ¹³C NMR spectra of C₈₄ isomers [34]. Similarly, the later found minor isomer with C_2 symmetry [33] should be tentatively assigned as the C₈₄:2 isomer by referring to the computation results of Sun and Kertesz [34].

Even though the C_s ³He@C₈₄:10 isomer could be optimized at the AM1 level, the frequency analysis had a convergence problem. Furthermore, the C₈₄:10 isomer was found to have an imaginary frequency at the PM3 and B3LYP/STO-3G levels [34]. Therefore, the calculation of its endohedral ³He NMR chemical shift was not performed. The δ_{calc} and δ_{corr} values of all isomers of ³He@C₈₄ except for the ³He@C₈₄:10 isomer at the GIAO-B3LYP/3-21G// AM1 level along with the δ_{exp} data of ³He@C₈₄ are listed in Table 3.

Table 3 The δ_{calc} , δ_{corr} and δ_{exp} data of ³He@C₈₄ isomers

Species	$\delta_{\rm calc}$ (ppm)	$\delta_{ m corr}$ (ppm)	δ_{exp} (ppm)
D_2 ³ He@C ₈₄ :1	-12.67	-18.01	
C ₂ ³ He@C ₈₄ :2	-13.34	-18.90	
$C_{\rm s}^{3}$ He@C ₈₄ :3	1.24	0.49	
D _{2d} ³ He@C ₈₄ :4	-17.68	-24.68	-24.35^{a}
D ₂ ³ He@C ₈₄ :5	-12.99	-18.45	
C_{2v} ³ He@C ₈₄ :6	-2.88	-5.00	
C_{2v} ³ He@C ₈₄ :7	-0.73	-2.14	
C_2 ³ He@C ₈₄ :8	-4.06	-6.56	
C_2 ³ He@C ₈₄ :9	4.21	4.43	
C ₂ ³ He@C ₈₄ :11	-3.71	-6.10	-7.50^{b}
C_1 ³ He@C ₈₄ :12	-2.37	-4.32	
C ₂ ³ He@C ₈₄ :13	5.31	5.89	
$C_{\rm s}^{3}$ He@C ₈₄ :14	-7.46	-11.09	-11.11^{b}
$C_{\rm s}^{3}$ He@C ₈₄ :15	-4.65	-7.35	
$C_{\rm s}^{3}$ He@C ₈₄ :16	-5.65	-8.68	-9.61^{b}
C_{2v} ³ He@C ₈₄ :17	0.58	-0.40	
C_{2v} ³ He@C ₈₄ :18	-6.21	-9.42	-10.01^{b}
D _{3d} ³ He@C ₈₄ :19	-0.41	-1.72	
$T_{\rm d}$ ³ He@C ₈₄ :20	-8.44	-12.38	
D ₂ ³ He@C ₈₄ :21	-1.41	-3.04	
D ₂ ³ He@C ₈₄ :22	-5.14	-8.00	-8.96^{b}
D _{2d} ³ He@C ₈₄ :23	-4.69	-7.40	-8.40^{b}
D _{6h} ³ He@C ₈₄ :24	-8.72	-12.77	-13.05^{b}

^a δ_{exp} from Ref. [2]

^b δ_{exp} from Ref. [3] after rounding off to two decimal

The highest peak among the C₈₄ isomers in both of the ³He NMR spectra was tentatively assigned to the isomer with D_2 symmetry [2, 3]. Our calculations of all of the four isomers with D_2 symmetry show that only the δ_{corr} (-8.00 ppm) of ³He@C₈₄:22 [28] is reasonably close to the experimentally observed -8.96 ppm. The assignment of the highest peak at -8.96 ppm as the D_2 ³He@C₈₄:22 isomer is consistent with the previous conclusion that the D_2 C₈₄:22 isomer was the most abundant one among the C₈₄ isomers [30, 32].

Previously, the combined fractions for the C_{84} isomers were separated again by HPLC on a Cosmosil *5PYE* column and the HPLC peak was cut into three fractions [35]. Taken the change trends of the relative ³He NMR peak strengths in all three fractions into account, it could be concluded that the elution order of the isomers for the corresponding ³He NMR peaks on the HPLC column was -13.05, -8.96, -8.40, -9.61, -7.50, -10.01 and -11.11 ppm [35]. Since the encapsulated ³He atom is very small and has little interaction with the fullerene cages, it is expected that the ³He-labeled fullerenes should have the same elution order as the unlabeled fullerenes. The empty C₈₄ isomers were separated by recycling HPLC technique, and the elution times on a 5PYE column were C₈₄:19/ $C_{84}:24 < C_{84}:22 < C_{84}:23 < C_{84}:16 < C_{84}:11 < C_{84}:14 < C_{8$ C_{84} :4 < C_{84} :5 [30–32]. The δ_{corr} data for these identified C_{84} isomers in the order of the increasing elution time on the 5PYE column are -1.72/-12.77, -8.00, -7.40, -8.68, -6.10, -11.09, -24.68 and -18.45 ppm for 3 He@C₈₄:19/ 3 He@C₈₄:24, 3 He@C₈₄:22, He@C₈₄:23, ³He@C₈₄:16, ³He@C₈₄:11, ³He@C₈₄:14, ³He@C₈₄:4 and ³He@C₈₄:5, respectively. The later isolated C_{84} isomer with C_2 symmetry [33] is now tentatively assigned as C_{84} :2, and its δ_{corr} is -18.90 ppm. Thus, the ³He NMR peaks at -13.05 [36], -8.96, -8.40, -9.61, -7.50 and -11.11 ppm can be safely assigned to ³He@C₈₄:24, ³He@C₈₄:22, ³He@C₈₄:23, ³He@C₈₄:16, ³He@C₈₄:11 and ³He@C₈₄:14, respectively. Note that the peak at -10.01 ppm is excluded as the ³He@C₈₄:14 isomer because the experimentally observed ³He NMR chemical shifts of these isomers are found to be more negative than their δ_{corr} values. The previous calculations at the B3LYP/ 6-31G* level of theory indicated that the energies of isomers C₈₄:1, C₈₄:2, C₈₄:3, C₈₄:7, C₈₄:8, C₈₄:9, C₈₄:10, C₈₄:13, C₈₄:17 and C₈₄:20 were at least 20 kcal/mol above that of the most stable isomers C_{84} :22 and C_{84} :23, and thus less likely existed in the higher fullerene mixture [34]. Therefore, the peak at -10.01 ppm is most probably due to the as-yet-not-isolated isomer C₈₄:18, of which the δ_{corr} is -9.42 ppm. This result implies that the next potentially isolated and characterized C_{84} isomer might be the C_{2v} C₈₄:18 isomer.

Interestingly, a peak at -24.35 ppm was found in the earlier ³He NMR spectrum [2]. This peak should be assigned to ³He@C₈₄:4 because only the computed δ_{corr} (-24.68 ppm) of ³He@C₈₄:4 is close to the experimental value and the C₈₄:4 isomer has been previously isolated and characterized [32].

3.4 Structural assignments of ³He@C₈₆

There are 19 isomers (6 × C_1 , 6 × C_2 , 3 × C_s , 2 × C_{2v} , C_3 , D_3) obeying the isolated pentagon rule for C₈₆. Two isomers with C_s and C_2 symmetries were separated and characterized by the ¹³C NMR spectroscopic measurement [37]. The provisional assignments as C_s C₈₆:16 and C_2 C₈₆:17 [37] were confirmed by the ¹³C NMR calculations by Sun and Kertesz [38].

The δ_{calc} and δ_{corr} data of all 19 isomers of ³He@C₈₆ at the GIAO-B3LYP/3-21G//AM1 level along with the δ_{exp} values of ³He@C₈₆ are collected in Table 4.

Previous B3LYP/6-31G calculations [38] showed that among the 19 isomers C_2 C₈₆:17 was the most stable isomer and C_s C₈₆:16 was less stable by only 6.58 kcal/mol. Both of them have a large HOMO–LUMO gap of at least

Table 4 The δ_{calc} , δ_{corr} and δ_{exp} data of ³He@C₈₆ isomers

Species	$\delta_{\rm calc}$ (ppm)	$\delta_{ m corr}$ (ppm)	δ_{\exp} (ppm)
C_1^{3} He@C ₈₆ :1	-16.02	-22.47	
C ₂ ³ He@C ₈₆ :2	-17.97	-25.07	
C_2 ³ He@C ₈₆ :3	-14.59	-20.57	
C_2 ³ He@C ₈₆ :4	-2.21	-4.11	
C_1^{3} He@C ₈₆ :5	-7.49	-11.13	
C_2 ³ He@C ₈₆ :6	-8.32	-12.23	
C_1^{3} He@C ₈₆ :7	9.56	11.55	
$C_{\rm s}^{3}$ He@C ₈₆ :8	9.28	11.17	
C_{2v} ³ He@C ₈₆ :9	17.35	21.91	
C_{2v} ³ He@C ₈₆ :10	-9.12	-13.29	
C_1 ³ He@C ₈₆ :11	-5.14	-8.00	
C_1 ³ He@C ₈₆ :12	-5.56	-8.56	
C_1 ³ He@C ₈₆ :13	-3.61	-5.97	
C_2 ³ He@C ₈₆ :14	-2.04	-3.88	
$C_{\rm s}^{-3}$ He@C ₈₆ :15	-0.83	-2.28	
$C_{\rm s}^{3}$ He@C ₈₆ :16	-9.88	-14.31	-14.15^{a}
C_2 ³ He@C ₈₆ :17	-6.43	-9.72	-10.58^{a}
C ₃ ³ He@C ₈₆ :18	-9.64	-13.99	
D_3 ³ He@C ₈₆ :19	-0.14	-1.36	

^a δ_{exp} from Ref. [3] after rounding off to two decimal

1.56 ev. However, other isomers have either too small HOMO–LUMO gap and/or relative energies higher than 20 kcal/mol, explaining well why only the $C_{\rm s}$ C₈₆:16 and C_2 C₈₆:17 isomers were stable and isolated. Thus, isomers except for $C_{\rm s}$ ³He@C₈₆:16 and C_2 ³He@C₈₆:17 should be discarded for the ³He NMR peak assignment. The peak at

-10.58 ppm labeled as C₈₆ in the ³He NMR spectrum can be confidently assigned as C_2 ³He@C₈₆:17 according to our calculation. Interestingly, the calculated δ_{corr} (-14.31 ppm) of C_s ³He@C₈₆:16 is nearly the same as the experimental value of -14.15 ppm, which was assigned as one of the C_{84} isomers [3]. The previous assignment was mainly based on the fact that the fraction at 36.6 min on a *PYE* column gave two ³He NMR peaks at -10.59 and -14.15 ppm, which were determined as isomers of C₈₆ and C_{84} by its mass spectrum [39]. However, the observed C_{84} in the mass spectrum could also arise from the fragmentation of C_{86} by loss of C_2 . Hence, both of the two ³He NMR peaks possibly came from isomers of C₈₆. Furthermore, the δ_{corr} values (-24.68 ppm for D_{2d} ³He@C₈₄:4 and -18.45 ppm for D_2 ³He@C₈₄:5) of the two isomers of C_{84} that co-eluted with C_{86} deviate far away from -14.15 ppm. Concluded from the above arguments, the peak at -14.15 ppm should be reassigned as the C_s ³He@C₈₆:16 isomer.

Comparison of the two ³He NMR spectra showed that five C_{84} isomers, that is, C_{84} :11, C_{84} :14, C_{84} :16, C_{84} :22 and C_{84} :23, existed in both cases. One small peak at -24.35 ppm due to C_{84} :4 was observed only in one ³He NMR spectrum [2], while the two small peaks at -10.01 and -13.05 ppm for C_{84} :18 and C_{84} :24 could only be found in another ³He NMR spectrum [3]. Thus, we believe that six C_{84} isomers were found in the spectrum reported in 1995 [2], while seven C_{84} isomers were observed in the ³He NMR spectrum published in 2000 [3], not considering the doubly labeling species. The different distribution of

 C_{84} isomers in the two ³He NMR spectra was due to the different sample sources, which might be prepared under different conditions.

The ³He NMR spectrum published in 2000 with structural assignments for the isomers of C₈₂, C₈₄, C₈₆ as well as C₇₆ and C₇₈ [40] is shown in Fig. 2. The corresponding structures for the assigned higher fullerenes ³He@C_n (n = 82, 84, 86) are given in Fig. 3.

4 Conclusion

The endohedral ³He NMR chemical shifts of open-cage fullerene compounds and higher fullerenes ³He@C_n (n = 82, 84, 86) have been calculated at the GIAO-B3LYP/3-21G//AM1 level. Our developed method can be successfully applied to the calculation and prediction of endohedral ³He chemical shifts for open-cage fullerene derivatives. More importantly, the combination of our GIAO-B3LYP/3-21G//AM1 method with the previous experimental results allows us to tackle the challenging ³He NMR peak assignments of ³He@C₈₂, ³He@C₈₄ and ³He@C₈₆ in the two reported ³He NMR spectra. It is expected that the calculated ³He NMR chemical shifts will continue to play an important role in the structural assignments of fullerene compounds.

Acknowledgments The authors are grateful for the financial support from National Natural Science Foundation of China (Nos. 20621061 and 20772117).

References

- Saunders M, Cross RJ, Jiménez-Vázquez HA, Shimshi R, Khong A (1996) Science 271:1693. doi:10.1126/science.271. 5256.1693
- Saunders M, Jiménez-Vázquez HA, Cross RJ, Billups WE, Gesenberg C, Gonzalez A, Luo W, Haddon RC, Diederich F, Herrmann A (1995) J Am Chem Soc 117:9305. doi:10.1021/ ja00141a023
- Wang GW, Saunders M, Khong A, Cross RJ (2000) J Am Chem Soc 122:3216. doi:10.1021/ja994270x
- Cioslowski J (1994) J Am Chem Soc 116:3619. doi:10.1021/ ja00087a066
- Bühl M, Thiel W, Jiao H, Schleyer Pv R, Saunders M, Anet FAL (1994) J Am Chem Soc 116:6005. doi:10.1021/ja00092a076
- Cioslowski J (1994) Chem Phys Lett 227:361. doi:10.1016/ 0009-2614(94)00844-2
- Bühl M, Thiel W (1995) Chem Phys Lett 233:585. doi:10.1016/ 0009-2614(94)01459-9
- Bühl M, Thiel W, Schneider U (1995) J Am Chem Soc 117:4623. doi:10.1021/ja00121a019
- Bühl M, Cv Wüllen (1995) Chem Phys Lett 247:63. doi:10.1016/ 0009-2614(95)01193-6
- Bühl M, Patchkovskii S, Thiel W (1997) Chem Phys Lett 275:14. doi:10.1016/S0009-2614(97)00733-1
- Bühl M (1998) Chem Eur J 4:734. doi:10.1002/(SICI)1521-3765(19980416)4:4<734::AID-CHEM734>3.0.CO;2-C

- Bühl M, Kaupp M, Malkina OL, Malkin VG (1999) J Comput Chem 20:91. doi:10.1002/(SICI)1096-987X(19990115)20:1<91:: AID-JCC10>3.0.CO;2-C
- Chen Z, Cioslowski J, Rao N, Monscrieff D, Bühl M, Hirsch A, Thiel W (2001) Theor Chem Acc 106:364. doi:10.1007/ s002140100283
- Chen Z, Thiel W (2003) Chem Phys Lett 367:15. doi: 10.1016/S0009-2614(02)01660-3
- Wang GW, Zhang XH, Zhan H, Guo QX, Wu YD (2003) J Org Chem 68:6732. doi:10.1021/jo0341259
- Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902. doi:10.1021/ja00299a024
- Wolinski K, Hinton JF, Pulay P (1990) J Am Chem Soc 112:8251. doi:10.1021/ja00179a005
- 18. Becke AD (1993) J Chem Phys 98:5648. doi:10.1063/1.464913
- Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785. doi: 10.1103/PhysRevB.37.785
- 20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador, P Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.03, Gaussian Inc., Pittsburgh
- Rubin Y, Jarrosson T, Wang GW, Bartberger MD, Houk KN, Schick G, Saunders M, Cross RJ (2001) Angew Chem Int Ed 40:1543. doi:10.1002/1521-3773(20010417)40:8<1543::AID-ANIE1543>3.0.CO;2-6
- 22. Stanisky CM, Cross RJ, Saunders M, Murata M, Murata Y, Komatsu K (2005) J Am Chem Soc 127:299. doi:10.1021/ ja045328x
- 23. Chuang SC, Murata Y, Murata M, Komatsu K (2007) Chem Commun (Camb) 1751. doi:10.1039/b702589k
- 24. Murata Y, Murata M, Komatsu K (2003) J Am Chem Soc 125:7152. doi:10.1021/ja0354162
- Kikuchi K, Nakahara N, Wakabayashi T, Suzuki S, Shiromaru H, Miyake Y, Saito K, Ikemoto I, Kainosho M, Achiba Y (1992) Nature 357:142. doi:10.1038/357142a0
- Zalibera M, Rapta P, Dunsch L (2007) Electrochem Commun 9:2843. doi:10.1016/j.elecom.2007.10.012

- Zalibera M, Popov AA, Kalbac M, Rapta P, Dunsch L (2008) Chem Eur J 14:9960. doi:10.1002/chem.200800591
- For the numbering of the fullerene isomers, see: Fowler PW, Manolopoulos DE (1995) An Atlas of Fullerenes, Oxford University Press, New York
- 29. Sun G, Kertesz M (2001) J Phys Chem A 105:5468. doi: 10.1021/jp004544z
- Dennis TJS, Kai T, Tomiyama T, Shinohara H (1998) Chem Commun (Camb) 619. doi:10.1039/a708025e
- Tagmatarchis N, Avent AG, Prassides K, Dennis TJS, Shinohara H (1999) Chem Commun (Camb) 1023. doi:10.1039/ a901709g
- Dennis TJS, Kai T, Asato K, Tomiyama T, Shinohara H, Yoshida T, Kobayashi Y, Ishiwatari H, Miyake Y, Kikuchi K, Achiba Y (1999) J Phys Chem A 103:8747. doi:10.1021/jp9925132
- Tagmatarchis N, Okada K, Tomiyama T, Yoshida T, Kobayashi Y, Shinohara H (2001) Chem Commun (Camb) 1366. doi: 10.1039/b103679n
- 34. Sun G, Kertesz M (2001) J Phys Chem A 105:5212. doi: 10.1021/jp0108418
- 35. See Ref. [10] in Ref. [2] of this paper, the details were not reported at that time
- 36. In the Ref. [3], the peak at -13.05 ppm was tentatively assigned to C₈₂ because it was present only in the first fraction of the cut three fractions and C₈₂ was known to be eluted earlier than the main isomers of C₈₄. However, the minor isomers C₈₄:19 and C₈₄:24 were also eluted before the main isomers C₈₄:22 and C₈₄:23 [31]. The calculated δ_{corr} (-12.77 ppm) of ³He@C₈₄:24 nicely matches the observed value. In contrast, the δ_{corr} (-9.50 ppm) of ³He@C₈₂:3 (the most stable isomer of ³He@C₈₂) is far away from -13.05 ppm. The above statements lead us to reassign the peak at -13.05 ppm as ³He@C₈₄:24
- Miyake Y, Minami T, Kikuchi K, Kainosho M, Achiba Y (2000) Mol Cryst Liq Cryst (Phila Pa) 340:553. doi:10.1080/ 10587250008025524
- Sun G, Kertesz M (2002) Chem Phys 276:107. doi:10.1016/ S0301-0104(01)00576-6
- 39. See Ref. [9] in Ref. [3] of this paper
- 40. Our previous work [15] showed that the peak at -11.91/-11.92 ppm was assigned as the D_3 ³He@C₇₈:1. Even though the previous calculation results by us [15] and Chen et al. [13] supported the original assignment of peak at -16.77 ppm as $C_{2v'}$ ³He@C₇₈:3 [2], this peak was reassigned as the doubly labeled C_{2v} ³He₂@C₇₈:2 [3]. The peak located at -17.58 ppm should be assigned to $C_{2v'}$ ³He@C₇₈:3, in accord with the result reported by Sternfeld et al. [41]
- Sternfeld T, Saunders M, Cross RJ, Rabinovitz M (2003) Angew Chem Int Ed 42:3136. doi:10.1002/anie.200351429